Publications
.  
2023.  H Is a Major Intermediate in  Corrosion of Iron.. mBio. 14(2):e0007623.
.  
2022.  Electrotrophy: Other microbial species, iron, and electrodes as electron donors for microbial respirations.. Bioresour Technol. 345:126553.
.  
2022.  Genetic Manipulation of Desulfovibrio ferrophilus and Evaluation of Fe(III) Oxide Reduction Mechanisms.. Microbiol Spectr. 10(6):e0392222.
.  
2021.  Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species.. ISME J. 15(10):3084-3093.
.  
2019.  Iron Corrosion via Direct Metal-Microbe Electron Transfer.. mBio. 10(3)
.  
2015.  Centimeter-long electron transport in marine sediments via conductive minerals.. ISME J. 9(2):527-31.
.  
2014.  Magnetite formation from ferrihydrite by hyperthermophilic archaea from Endeavour Segment, Juan de Fuca Ridge hydrothermal vent chimneys.. Geobiology. 12(3):200-11.
.  
2014.  Mycobacterial Esx-3 requires multiple components for iron acquisition.. MBio. 5(3):e01073-14.
.  
2013.  Anaerobic benzene oxidation via phenol in Geobacter metallireducens.. Appl Environ Microbiol. 79(24):7800-6.
.  
2013.  Fluctuations in species-level protein expression occur during element and nutrient cycling in the subsurface.. PLoS One. 8(3):e57819.
.  
2013.  Interference of ferric ions with ferrous iron quantification using the ferrozine assay.. J Microbiol Methods. 95(3):366-7.
.  
2011.  Biochemical characterization of purified OmcS, a c-type cytochrome required for insoluble Fe(III) reduction in Geobacter sulfurreducens.. Biochim Biophys Acta. 1807(4):404-12.
.  
2010.  The genome of Geobacter bemidjiensis, exemplar for the subsurface clade of Geobacter species that predominate in Fe(III)-reducing subsurface environments.. BMC Genomics. 11:490.
.  
2010.  Microbial communities acclimate to recurring changes in soil redox potential status.. Environ Microbiol. 12(12):3137-49.
.  
2009.  Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation.. Microb Biotechnol. 2(2):274-86.
.  
2009.  Genome-scale constraint-based modeling of Geobacter metallireducens.. BMC Syst Biol. 3:15.
.  
2009.  Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition.. Proc Natl Acad Sci U S A. 106(44):18792-7.
.  
2008.  Constraints on anaerobic respiration in the hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilum.. Appl Environ Microbiol. 74(2):396-402.
.  
2008.  Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation.. Environ Microbiol. 10(5):1218-30.
.  
2008.  Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production.. Appl Environ Microbiol. 74(14):4277-84.
.  
2006.  Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling.. Appl Environ Microbiol. 72(2):1558-68.
.  
2004.  Preferential reduction of FeIII over fumarate by Geobacter sulfurreducens.. J Bacteriol. 186(9):2897-9.
.  
2003.  Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells.. Nat Biotechnol. 21(10):1229-32.
.  
2003.  OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens.. J Bacteriol. 185(7):2096-103.
.  
2003.  Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the "Bag City" hydrothermal vent.. Appl Environ Microbiol. 69(5):2985-93.

Department of Microbiology