Publications
.
2020. Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option.. ISME J. 14(3):837-846.
.
2018. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms.. ISME J. 12(1):48-58.
.
2013. Transcriptomic and genetic analysis of direct interspecies electron transfer.. Appl Environ Microbiol. 79(7):2397-404.
.
2012. The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features.. BMC Genomics. 13:690.
.
2012. Interspecies electron transfer via hydrogen and formate rather than direct electrical connections in cocultures of Pelobacter carbinolicus and Geobacter sulfurreducens.. Appl Environ Microbiol. 78(21):7645-51.
.
2011. Molecular analysis of the metabolic rates of discrete subsurface populations of sulfate reducers.. Appl Environ Microbiol. 77(18):6502-9.
.
2010. Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus.. BMC Evol Biol. 10:230.
.
2008. Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production.. Appl Environ Microbiol. 74(14):4277-84.
.
2007. Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes.. Appl Environ Microbiol. 73(16):5347-53.
.
2006. c-Type cytochromes in Pelobacter carbinolicus.. Appl Environ Microbiol. 72(11):6980-5.
.
2005. Characterization of citrate synthase from Geobacter sulfurreducens and evidence for a family of citrate synthases similar to those of eukaryotes throughout the Geobacteraceae.. Appl Environ Microbiol. 71(7):3858-65.
.
2005. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site.. Appl Environ Microbiol. 71(10):6308-18.
.
2005. A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe(III) and Mn(IV) oxides in Geobacter sulfurreducens.. BMC Microbiol. 5:41.
.
2005. Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes.. Appl Environ Microbiol. 71(11):6870-7.
.
2004. Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov.. Int J Syst Evol Microbiol. 54(Pt 5):1591-9.
.
2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes.. Appl Environ Microbiol. 70(2):1234-7.
.
2004. MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens.. J Bacteriol. 186(12):4042-5.
.
2004. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell.. Appl Environ Microbiol. 70(10):6023-30.
.
2004. Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater.. Appl Environ Microbiol. 70(12):7558-60.
.
2003. Electricity production by Geobacter sulfurreducens attached to electrodes.. Appl Environ Microbiol. 69(3):1548-55.
.
2003. OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens.. J Bacteriol. 185(7):2096-103.
.
2003. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the "Bag City" hydrothermal vent.. Appl Environ Microbiol. 69(5):2985-93.
.
2002. Analysis of the genetic potential and gene expression of microbial communities involved in the in situ bioremediation of uranium and harvesting electrical energy from organic matter.. OMICS. 6(4):331-9.
.
2002. Electrode-reducing microorganisms that harvest energy from marine sediments.. Science. 295(5554):483-5.

Department of Microbiology