Publications
Export 78 results:
Filters: Author is Lovley, Derek R and Keyword is Electron Transport [Clear All Filters]
.
2002. Desulfitobacterium metallireducens sp. nov., an anaerobic bacterium that couples growth to the reduction of metals and humic acids as well as chlorinated compounds.. Int J Syst Evol Microbiol. 52(Pt 6):1929-35.
.
2002. Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor.. Int J Syst Evol Microbiol. 52(Pt 3):719-28.
.
2002. Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov.. Appl Environ Microbiol. 68(4):1735-42.
.
2003. Electricity production by Geobacter sulfurreducens attached to electrodes.. Appl Environ Microbiol. 69(3):1548-55.
.
2003. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III).. Int J Syst Evol Microbiol. 53(Pt 3):669-73.
.
2003. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the "Bag City" hydrothermal vent.. Appl Environ Microbiol. 69(5):2985-93.
.
2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes.. Appl Environ Microbiol. 70(2):1234-7.
.
2004. MacA, a diheme c-type cytochrome involved in Fe(III) reduction by Geobacter sulfurreducens.. J Bacteriol. 186(12):4042-5.
.
2004. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell.. Appl Environ Microbiol. 70(10):6023-30.
.
2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans.. Appl Environ Microbiol. 71(4):2186-9.
.
2005. Extracellular electron transfer via microbial nanowires.. Nature. 435(7045):1098-101.
.
2006. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.. Appl Environ Microbiol. 72(11):7345-8.
.
2006. Bug juice: harvesting electricity with microorganisms.. Nat Rev Microbiol. 4(7):497-508.
.
2006. A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens.. Microbiology. 152(Pt 8):2257-64.
.
2007. Lack of electricity production by Pelobacter carbinolicus indicates that the capacity for Fe(III) oxide reduction does not necessarily confer electron transfer ability to fuel cell anodes.. Appl Environ Microbiol. 73(16):5347-53.
.
2007. Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation.. J Bacteriol. 189(5):2125-7.
.
2008. Extracellular electron transfer: wires, capacitors, iron lungs, and more.. Geobiology. 6(3):225-31.
.
2008. Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens.. Environ Microbiol. 10(2):497-505.
.
2008. Geobacter sulfurreducens strain engineered for increased rates of respiration.. Metab Eng. 10(5):267-75.
.
2008. Growth with high planktonic biomass in Shewanella oneidensis fuel cells.. FEMS Microbiol Lett. 278(1):29-35.
.
2008. Quantification of Desulfovibrio vulgaris dissimilatory sulfite reductase gene expression during electron donor- and electron acceptor-limited growth.. Appl Environ Microbiol. 74(18):5850-3.
.
2009. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.. PLoS One. 4(5):e5628.
.
2009. Diversity of promoter elements in a Geobacter sulfurreducens mutant adapted to disruption in electron transfer.. Funct Integr Genomics. 9(1):15-25.
.
2009. Genome-scale constraint-based modeling of Geobacter metallireducens.. BMC Syst Biol. 3:15.
.
2010. Constraint-based modeling analysis of the metabolism of two Pelobacter species.. BMC Syst Biol. 4:174.

Department of Microbiology